Alberto Aparici. El espacio-tiempo podría ser un fenómeno cuántico

… teoría de la relatividad, Einstein dedicó muchos esfuerzos a armonizarla con lo que sabíamos sobre la gravedad… el espacio y el tiempo tenían que ser dinámicos también. Espacio y tiempo tenían que poder cambiar, igual que hacen los objetos. 

A diferencia de los objetos, el espacio y el tiempo no pueden moverse, así que los cambios que les ocurren son de otro tipo. Solemos decir que se deforman, y a grandes rasgos eso significa lo siguiente: cuando el espacio está deformado vemos que los objetos se mueven en trayectorias curvas; cuando el tiempo está deformado vemos que los relojes corren más lento. Al resultado de estas deformaciones lo llamamos gravedad: los planetas giran alrededor del Sol, por ejemplo, porque el espacio alrededor del Sol está deformado. Los efectos de la gravedad sobre el tiempo no eran conocidos antes de Einstein, pero ahora los hemos comprobado en innumerables ocasiones. 

¿qué es lo que hace que el espacio y el tiempo se deformen? si esto es una teoría de la gravedad las fuentes no pueden ser otras que la masa. O sea, que el espacio alrededor del Sol no está deformado por casualidad, sino porque es el mismo Sol el que lo está deformando. 

…Hemos pasado de un universo en el que espacio y tiempo eran un simple lienzo en el que se movían las cosas a que, de repente, las cosas vean un lienzo diferente según la velocidad a la que se muevan, y ahora un paso más allá: las cosas modifican el lienzo, y otros objetos que se mueven por él se dan cuenta y cambian su movimiento debido a ello.  

¿qué nos dice el espacio-tiempo sobre los objetos que hay en él? El espacio-tiempo nos dice que hay regiones prohibidas, porque para llegar a ellas sería necesario moverse más rápido que la luz. Por ejemplo, yo no puedo saber nada de lo que está pasando ahora mismo en la Galaxia de Andrómeda, porque está a más de dos millones de años luz. La información que me llega me dice cómo era esa galaxia hace dos millones de años, pero no tengo información directa sobre cómo es ahora mismo. El presente de Andrómeda está en mi “zona prohibida”, y no hay forma de que yo interaccione con los objetos que hay ahora allí.  

O sea, que una de las cosas que hace el espacio-tiempo es codificar qué sistemas pueden intercambiar información, y cuándo pueden hacerlo. Esta idea es la que ha llevado a algunos físicos teóricos a pensar si no será que el espacio y el tiempo son una forma muy elaborada de establecer relaciones entre los sistemas físicos. ¿Quién puede interaccionar con quién? ¿Cuáles deben de ser sus velocidades para que interaccionen antes o después? Todas estas preguntas tienen que ver con las propiedades de los objetos, pero el que las responde es el espacio-tiempo. ¿Es posible acaso llevar un paso más allá esta relación cada vez más estrecha entre objetos y espacio-tiempo? 

Estas ideas son sugestivas, pero no dejan de ser eso: sugerencias. También son un poco vagas, porque, aunque compráramos esto de que el espacio-tiempo contiene información sobre los objetos, ¿y qué? ¿Adónde nos lleva eso? La cosa se va a poner interesante si introducimos en la ecuación a un invitado inesperado: la física cuántica. 

La teoría cuántica … tiene una impresionante batería de herramientas para describir la información almacenada en un sistema físico. Las propiedades de un sistema –su masa, su temperatura, su velocidad– no dejan de ser información que ese sistema posee, y la física cuántica nos da predicciones muy precisas sobre cuánta de esa información podemos extraer, cómo esa información pasa de un sistema a otro cuando interaccionan, y cómo algunos procesos físicos hacen que parte de la información se pierda.  

Un fenómeno cuántico especialmente interesante relacionado con la información es el entrelazamiento. Esencialmente, consiste en que las propiedades de varios objetos están ligadas entre sí, de forma que si yo obtengo información de uno de ellos, en realidad estoy aprendiendo también cosas sobre los otros. Por ejemplo, pongamos que tengo dos partículas, y lo que sé sobre ellas es que la carga total es cero. Si quiero saber qué carga tienen no necesito medir las dos partículas: mido sólo una, y si su carga es +1 la de la otra será -1; o si la partícula que mido tiene carga 0 la otra también tendrá carga 0. Podemos entender los estados entrelazados como una situación en la que “hay menos información que objetos”: me basta con obtener información de unos pocos para conocer la información de todos. 

Y precisamente este fenómeno es el que podría permitir conectar la física cuántica con el espacio-tiempo. El argumento, muy burdamente, es que dos sistemas entrelazados tienen información en común, mientras que dos objetos conectados en el espacio-tiempo tienen un pasado o un futuro en común que les permiten intercambiar información. O a la inversa: dos objetos que se encuentran en la “región prohibida” el uno del otro no tienen ningún tipo de conexión, de la misma forma que dos sistemas no entrelazados son enteramente independientes. Esto acercaría definitivamente a los objetos y el espacio-tiempo: este último sería, en última instancia, un reflejo de las relaciones entre los objetos. 

Conocemos un marco en el que esta conexión entre espacio-tiempo e información cuántica aparece de forma bastante espectacular: se trata de las teorías duales AdS/CFT, que se usan a menudo en el contexto de física de cuerdas. El nombre hace referencia a que son parejas de teorías, una de tipo “AdS” y otra de tipo “CFT”. CFT es una teoría cuántica en la que no hay gravedad. AdS es otra teoría cuántica, pero esta vez con gravedad y con una dimensión más que la teoría CFT. O sea, que si la teoría CFT “vive” en un mundo de tres dimensiones espaciales + el tiempo, la teoría AdS vivirá en un mundo con cuatro dimensiones espaciales + el tiempo. 

La gracia de las parejas AdS/CFT es que las dos teorías describen exactamente la misma física. ..se conjeturó que existen muchas de estas parejas, y que cualquier proceso físico que ocurre en un miembro de la pareja tiene un proceso “espejo” en el otro miembro que describe los mismos fenómenos. La idea es que la pareja AdS/CFT representa dos lenguajes diferentes para entender la misma realidad física: uno de los lenguajes tiene sólo una teoría cuántica; en el otro tenemos, además, un espacio-tiempo curvado y una dimensión adicional. 

Si las dos teorías son verdaderamente equivalentes eso significa que la dimensión extra de la teoría AdS está “codificada” de alguna manera en la teoría CFT. O sea, que la teoría cuántica contiene algún elemento que es exactamente equivalente a una nueva dimensión espacial. ese elemento podría ser cualquier cosa: uno o varios tipos de partícula, la forma en que esas partículas interaccionan, o una combinación de todo ello. Pero un artículo recién publicado en la revista Science identifica dónde está codificada la dimensión adicional: en el entrelazamiento de la teoría cuántica. 

La idea consiste en tomar una CFT y dividirla en piezas independientes. Cada pieza está formada por partículas que interaccionan unas con otras, pero no se hablan con las del resto de piezas. Lo que sí permite es que las diversas piezas compartan información entre sí. Al reunir todas las piezas obtengo algo similar a la teoría que tenía inicialmente, como si fuera un mosaico de pequeñas baldosas, pero con una diferencia: lo único que une a las diferentes piezas es la información que tienen en común. 

La sorpresa es que esta estructura, que nos podría parecer tremendamente simple, es suficiente para que la CFT siga siendo equivalente a la teoría AdS. No nos hace falta que las partículas puedan moverse libremente por toda la CFT, ni tampoco que puedan intercambiar energía con partículas que tienen lejos. Basta con que todas las partículas compartan cierta información, que estén entrelazadas. Este resultado, junto con otros anteriores, parece establecer que el entrelazamiento en una teoría CFT contiene la misma información que una dimensión espacial en una teoría AdS. 

… la física que conocemos en nuestro universo no es conforme, así que no viene descrita por una teoría CFT. Y el espacio-tiempo de nuestro universo no es anti-de Sitter, así que la dimensión adicional que hemos creado tampoco parece útil para nuestro universo. … Quizá AdS/CFT haya abierto la ventana y ahora nos toque a nosotros asomarnos. 

Uno de los objetivos de la física es entender cómo funciona el universo en el que vivimos, pero otro también es lograr entenderlo de la manera más transparente posible. El espacio y el tiempo son, y seguirán siendo, una parte fundamental de la realidad física, pero tal vez (sólo tal vez) algún día descubramos que son el reflejo de otra realidad física, más profunda todavía. ¿Será el entrelazamiento? Quién sabe. Lo que es seguro es que la carrera para entender el alma del espacio-tiempo ya está en marcha. 

https://www.larazon.es/ciencia/20201106/5m5be4rtmjcwtgrzm55v45ayrq.html?outputType=amp